Manifestations of anomalous glue: Light-mass exotic mesons and $g_{\eta'NN}$

S.D. Bass^a

Institute for Theoretical Physics, University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria

Received: 30 September 2002 /

Published online: 22 October 2003 – © Società Italiana di Fisica / Springer-Verlag 2003

Abstract. The light-mass exotics with $J^{PC} = 1^{-+}$ observed at BNL and CERN may have a simple explanation as dynamically generated resonances in $\eta'\pi$ rescattering in the final-state interaction. This dynamics is mediated by the same anomalous glue which also generates the large mass of the η' . OZI-violating processes are also potentially important to η' production in proton-proton collisions close to threshold.

PACS. 12.39.Mk Glueball and nonstandard multi-quark/gluon states – 13.75.Lb Meson-meson interactions – 13.75.Cs Nucleon-nucleon interactions (including antinucleons, deuterons, etc.)

1 Introduction

Searching for evidence of gluonic degrees of freedom in low-energy QCD is one of the main themes driving present experimental and theoretical studies of the strong interaction. Key probes include glueball and $J^{PC} = 1^{-+}$ exoticmeson searches plus OZI violation in η' physics [1] which is sensitive to gluonic degrees of freedom through the U(1)axial anomaly [2]. Exotic mesons are particularly interesting because the quantum numbers $J^{PC} = 1^{-+}$ are inconsistent with a simple quark-antiquark bound state [3]. Two such exotics, with masses 1400 and 1600 MeV, have been observed in experiments at BNL [4] and CERN [5] in decays to $\eta' \pi$ and $\eta \pi$. These exotics have been a puzzle to theorists and experimentalists alike because the lightestmass $q\bar{q}q$ state with exotic quantum numbers predicted by lattice calculations [6,7] and QCD-inspired models [8] has mass about 1800–1900 MeV. As we explain here, the presently observed light-mass exotics seen at BNL and CERN may have a simple explanation [9] as dynamically generated resonances in $\eta'\pi$ rescattering (in the finalstate interaction). The anomalous glue which generates the large η' mass plays an essential role in this dynamics.

The physics of anomalous glue also yields interesting phenomenology in the η' -nucleon system. The flavorsinglet Goldberger-Treiman relation [10] relates the flavorsinglet axial-charge $g_A^{(0)}$ extracted from polarized deep inelastic scattering [11] to the η' -nucleon coupling constant. The small value of $g_A^{(0)}$ (about 50% of the OZI value 0.6) measured in polarized DIS and the large mass of the η' point to large violations of OZI in the flavor-singlet $J^{PC} = 1^{++}$ channel. OZI-violating processes may also play an important role [12] in η' production in protonnucleon collisions close to threshold [13]. This process is presently under investigation at COSY [14].

We first review the puzzle of light-mass exotics. We then explain how the presently observed states may be understood as dynamically generated resonances in $\eta'\pi$ rescattering. Here we briefly review the $U_A(1)$ -extended effective Lagrangian for low-energy QCD [15, 16]. This Lagrangian is constructed so that it successfully includes the effects of the strong U(1) axial anomaly and the large η' mass. Finally, we discuss η' production in proton-nucleon collisions close to threshold where new effects [12] of OZI violation are suggested by coupling this Lagrangian to the nucleon.

2 Light-mass exotics

The $J^{PC} = 1^{-+}$ light-mass exotics discovered at BNL [4] and CERN [5] were observed in decays to $\eta\pi$ and $\eta'\pi$. Two such exotics, denoted π_1 , have been observed through $\pi^- p \to \pi_1 p$ at BNL [4]: with masses 1400 MeV (in decays to $\eta\pi$) and 1600 MeV (in decays to $\eta'\pi$ and $\rho\pi$). The $\pi_1(1400)$ state has also been observed in $\bar{p}N$ processes by the Crystal Barrel Collaboration at CERN [5]. While the exotic quantum numbers $J^{PC} = 1^{-+}$ are inconsistent with a quark-antiquark bound state, they can be generated through a "valence" gluonic component —for example through coupling to the operator $[\bar{q}\gamma_{\mu}qG^{\mu\nu}]$. However, the observed exotics are considerably lighter than

^a e-mail: Steven.Bass@cern.ch

the predictions (about 1800–1900 MeV) of quenched lattice QCD [6,7] and QCD-inspired models [8] for the lowest mass $q\bar{q}g$ state with $J^{PC} = 1^{-+}$. These results suggest that, perhaps, the "exotic" states observed by the experimentalists might involve significant meson-meson boundstate contributions. Furthermore, the decays of the lightmass exotics to η - or η' -mesons plus a pion suggest a possible connection to axial U(1) dynamics.

This idea has recently been investigated [9] in a model of final-state interaction in $\eta\pi$ and $\eta'\pi$ rescattering using the $U_A(1)$ -extended chiral Lagrangian [15,16], coupled channels and the Bethe-Salpeter equation, following the approach of the Valencia group [17].

The $U_A(1)$ -extended low-energy effective Lagrangian used in these calculations is

$$\mathcal{L}_{\rm m} = \frac{F_{\pi}^2}{4} \operatorname{Tr}(\partial^{\mu}U\partial_{\mu}U^{\dagger}) + \frac{F_{\pi}^2}{4} \operatorname{Tr}\left[\chi_0 \left(U + U^{\dagger}\right)\right] + \frac{1}{2} i Q \operatorname{Tr}\left[\log U - \log U^{\dagger}\right] + \frac{3}{\tilde{m}_{\eta_0}^2 F_0^2} Q^2 + \lambda Q^2 \operatorname{Tr} \partial_{\mu}U\partial^{\mu}U^{\dagger}.$$
(1)

Here $U = \exp\left(i\frac{\phi}{F_{\pi}} + i\sqrt{\frac{2}{3}}\frac{\eta_0}{F_0}\right)$ is the unitary meson matrix where $\phi = \sum_k \phi_k \lambda_k$ with ϕ_k denoting the octet of wouldbe Goldstone bosons (π, K, η_8) associated with spontaneous chiral $SU(3)_L \otimes SU(3)_R$ breaking, and η_0 is the singlet boson; Q denotes the topological charge density $\left(Q = \frac{\alpha_s}{4\pi}G\tilde{G}\right)$. Also, $\chi_0 = \text{diag}[m_\pi^2, m_\pi^2, (2m_K^2 - m_\pi^2)]$ is the quark-mass-induced meson mass matrix, \tilde{m}_{η_0} is the gluonic-induced mass term for the singlet boson and λ is an OZI-violating coupling —see below. The pion decay constant $F_{\pi} = 92.4$ MeV and F_0 renormalizes the flavorsinglet decay constant $F_{\text{singlet}} = F_\pi^2/F_0 \sim 100$ MeV.

The gluonic potential involving Q is constructed so that the effective theory reproduces the QCD axial anomaly [2] in the divergence of the gauge invariantly renormalized axial-vector current. This potential also generates the gluonic contribution to the η and η' masses: Qis treated as a background field with no kinetic term; it may be eliminated through its equation of motion to yield

$$\frac{1}{2}iQ\mathrm{Tr}\left[\log U - \log U^{\dagger}\right] + \frac{3}{\tilde{m}_{\eta_0}^2 F_0^2}Q^2 \quad \mapsto \quad -\frac{1}{2}\tilde{m}_{\eta_0}^2\eta_0^2 \,. \tag{2}$$

The η - η' mass matrix resulting from eq. (1) gives η and η' masses:

$$m_{\eta',\eta}^2 = (m_{\rm K}^2 + \tilde{m}_{\eta_0}^2/2) \pm \frac{1}{2} \sqrt{(2m_{\rm K}^2 - 2m_{\pi}^2 - \frac{1}{3}\tilde{m}_{\eta_0}^2)^2 + \frac{8}{9}\tilde{m}_{\eta_0}^4}.$$
 (3)

If the gluonic term $\tilde{m}_{\eta_0}^2$ were zero in this expression, one would have $m_{\eta'} = \sqrt{2m_{\rm K}^2 - m_{\pi}^2}$ and $m_{\eta} = m_{\pi}$. Without any extra input from glue, in the OZI limit, the η

would be approximately an isosinglet light-quark state $(\frac{1}{\sqrt{2}}|\bar{u}u+\bar{d}d\rangle)$ degenerate with the pion and the η' would be a strange-quark state $|\bar{s}s\rangle$ —mirroring the isoscalar vector ω - and ϕ -mesons. Indeed, in an early paper [18] Weinberg argued that the mass of the η would be less than $\sqrt{3}m_{\pi}$ without any extra U(1) dynamics to further break the axial U(1) symmetry. The gluonic contribution to the η and η' masses is about 300–400 MeV [1].

In the model calculations [9] of FSI the meson-meson (re-)scattering potentials in the Bethe-Salpeter equation were derived from the Lagrangian (1). The OZI-violating interaction λQ^2 Tr $\partial_{\mu} U \partial^{\mu} U^{\dagger}$ [16] was found to play a key role in the $J^{PC} = 1^{-+}$ channel. A simple estimate for the coupling λ can be deduced from the decay $\eta' \to \eta \pi \pi$ vielding two possible solutions with different signs. Especially interesting is the negative-sign solution. When substituted into the Bethe-Salpeter equation this solution was found to yield a dynamically generated *p*-wave resonance with exotic quantum numbers $J^{PC} = 1^{-+}$. Furthermore, this resonance was found to have mass ~ 1400 MeV and width ~ 300 MeV —close to the observed exotics. (The width of the $\pi_1(1400)$ state measured in decays to $\eta\pi$ is 385 ± 40 MeV; the width of the $\pi_1(1600)$ measured in decays to $\eta' \pi$ is 340 ± 64 MeV.) The topological charge density mediates the coupling of the dynamically generated light-mass exotic to the $\eta\pi$ and $\eta'\pi$ channels in these calculations. For detailed discussion and the amplitudes for the individual channels which contribute to this dynamics, see [9].

3 OZI violation in the η' -nucleon system

Going beyond the meson sector, it is interesting to look for evidence of OZI violation in the η' -nucleon system. Some guidance is provided by coupling the $U_A(1)$ -extended chiral Lagrangian to the nucleon [12]. Here we find a gluoninduced contact interaction in the $pp \rightarrow pp\eta'$ reaction close to threshold:

$$\mathcal{L}_{\text{contact}} = -\frac{i}{F_0^2} g_{QNN} \tilde{m}_{\eta_0}^2 \mathcal{C} \eta_0 \left(\bar{p}\gamma_5 p\right) \left(\bar{p}p\right).$$
(4)

Here g_{QNN} is an OZI-violating coupling which measures the one-particle irreducible coupling of the topological charge density Q to the nucleon and C is a second OZIviolating coupling which also features in $\eta'N$ scattering. The physical interpretation of the contact term (4) is a "short distance" (~ 0.2 fm) interaction where glue is excited in the interaction region of the proton-proton collision and then evolves to become an η' in the final state. This gluonic contribution to the cross-section for $pp \rightarrow pp\eta'$ is extra to the contributions associated with meson exchange models [19,20]. There is no reason, a priori, to expect it to be small.

What is the phenomenology of this OZI-violating interaction?

Fig. 1. CELSIUS data on η production.

Since glue is flavor-blind, the contact interaction (4) has the same size in both the $pp \rightarrow pp\eta'$ and $pn \rightarrow pn\eta'$ reactions. CELSIUS [21] have measured the ratio $R_{\eta} = \sigma(pn \rightarrow pn\eta)/\sigma(pp \rightarrow pp\eta)$ for quasifree η production from a deuteron target up to 100 MeV above threshold. They observed that R_{η} is approximately energy independent $\simeq 6.5$ over the whole energy range —see fig. 1. The value of this ratio signifies a strong isovector exchange contribution to the η production mechanism [21]. This experiment can be repeated for η' production. The cross-section for $pp \rightarrow pp\eta'$ close to threshold has been measured at COSY [14]. A new experiment [22] has been initiated to carry out the $pn \rightarrow pn\eta'$ measurement. In the formal limit that the $pp \rightarrow pp\eta'$ reaction were dominated by gluonicinduced production, the ratio

$$R_{\eta'} = \sigma(pn \to pn\eta') / \sigma(pp \to pp\eta') \tag{5}$$

would approach unity close to threshold after we correct for the final-state interaction [23] between the two outgoing nucleons. It will be interesting to compare future measurements of $R_{\eta'}$ with the CELSIUS measurement [21] of R_{η} . Given that η' phenomenology is characterised by large OZI violations, it is natural to expect large OZI effects in the $pp \rightarrow pp\eta'$ process.

SDB is supported by a Lise-Meitner Fellowship, M683, of the Austrian FWF. I thank W. Oelert and the COSY-11 Collaboration for hospitality in Juelich, P. Moskal for helpful discussions and E. Marco for collaboration on light-mass exotics.

References

- 1. S.D. Bass, Phys. Scr. T 99, 96 (2002), hep-ph/0111180.
- G.M. Shore, Lecture at 1998 Zuoz Summer School, hepph/9812354.
- 3. A.R. Dzierba, hep-ex/0106010 and this issue, p. 273.
- The E852 Collaboration (D.R. Thompson *et al.*), Phys. Rev. Lett. **79**, 1630 (1997); (S.U. Chung *et al.*), Phys. Rev. D **60**, 092001 (1999); (G.S. Adams *et al.*), Phys. Rev. Lett. **81**, 5760 (1998); (E.I. Ivanov *et al.*), Phys. Rev. Lett. **86**, 3977 (2001).
- The Crystal Barrel Collaboration (A. Abele *et al.*), Phys. Lett. B 423, 246 (1998).
- P. Lacock *et al.* (UKQCD), Phys. Rev. D **54**, 6997 (1996); Phys. Lett. B **401**, 308 (1997); C. Bernard *et al.* (MILC), Phys. Rev. D **56**, 7039 (1997); Nucl. Phys. B Proc. Suppl. **53**, 228 (1997).
- A.W. Thomas, A.P. Szczepaniak, Phys. Lett. B 526, 72 (2002).
- N. Isgur, R. Kokoski, J. Paton, Phys. Rev. Lett. 54, 869 (1985);
 F.E. Close, P.R. Page, Nucl. Phys. B 443, 233 (1995);
 T. Barnes, F.E. Close, E.S. Swanson, Phys. Rev. D 52, 5242 (1995).
- S.D. Bass, E. Marco, Phys. Rev. D 65, 057503 (2002), hepph/0108189.
- G. Veneziano, Mod. Phys. Lett. A 4, 1605 (1989); G.M. Shore, G. Veneziano, Nucl. Phys. B 381, 23 (1992); T. Hatsuda, Nucl. Phys. B 329, 376 (1990).
- S.D. Bass, Eur. Phys. J A 5, 17 (1999), hep-ph/9902280;
 E. Reya, B. Lampe, Phys. Rept. 332, 1 (2000); B.W. Filippone, X. Ji, hep-ph/0101224.
- 12. S.D. Bass, Phys. Lett B 463, 286 (1999), hep-ph/9907373.
- G. Fäldt, T. Johannson, C. Wilkin, Phys. Scr. T 99, 146 (2002).
- The COSY-11 Collaboration (P. Moskal *et al.*), Phys. Rev. Lett. **80**, 3202 (1998); Phys. Lett. B **474**, 416 (2000); **482**, 356 (2000).
- P. Di Vecchia, G. Veneziano, Nucl. Phys. B **171**, 253 (1980).
- P. Di Vecchia, F. Nicodemi, R. Pettorino, G. Veneziano, Nucl. Phys. B 181, 318 (1981).
- 17. J.A. Oller, E. Oset, Nucl. Phys. A 620, 438 (1997); A 652, 407(E) (1997).
- 18. S. Weinberg, Phys. Rev. D 11, 3583 (1975).
- R. Machleidt, K. Holinde, Ch. Elster, Phys. Rept. 149, 1 (1987).
- J.-F. Germond, C. Wilkin, Nucl. Phys. A **518**, 308 (1990);
 G. Fäldt, C. Wilkin, Z. Phys. A **357**, 241 (1997); K. Nakayama, H.F. Arellano, J.W. Durso, J. Speth, Phys. Rev. C **61**, 024001 (1999).
- The CELSIUS Collaboration (H. Calen *et al.*), Phys. Rev. Lett. **80**, 2069 (1998); Phys. Rev. C **58**, 2667 (1998).
- The COSY-11, Uppsala University Collaboration (P. Moskal, T. Johansson et al.), COSY Proposal No.100; P. Moskal, in Proceedings of the Symposium on Threshold Meson Production in pp and pd Interactions, June 20-24, 2001, Crakow, Poland, Schriften des FZ-Jülich, Matter and Materials, edited by P. Moskal, M. Wolke, Vol. 11 (Forschungszentrum, Jülich, 2002), nucl-ex/0110001.
- G. Fäldt, C. Wilkin, Phys. Scr. 56, 566 (1997); Am. J. Phys. 66, 876 (1998).